Dynamic Regression Models for Time-Ordered Functional Data
نویسندگان
چکیده
For time-ordered functional data, an important yet challenging task is to forecast observations with uncertainty quantification. Scalar predictors are often observed concurrently data and provide valuable information about the dynamics of time series. We develop a fully Bayesian framework for dynamic regression, which employs scalar model time-evolution data. Functional within-curve dependence modeled using unknown basis functions, learned from The provides substantial dimension reduction, essential scalable computing, may incorporate prior knowledge such as smoothness or periodicity. specified time-varying parameter regression in effects evolve over time. To guard against overfitting, we design shrinkage priors that regularize irrelevant shrink toward time-invariance. Simulation studies decisively confirm utility these modeling choices. Posterior inference available via customized Gibbs sampler, offers unrivaled scalability regression. methodology applied yield curves macroeconomic predictors, demonstrates exceptional forecasting accuracy quantification span four decades.
منابع مشابه
Dynamic Retrospective Regression for Functional Data
Samples of curves, or functional data, usually present phase variability in addition to amplitude variability. Existing functional regression methods do not handle phase variability in an efficient way. In this paper we propose a functional regression method that incorporates phase synchronization as an intrinsic part of the model, and then attains better predictive power than ordinary linear r...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولDynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملComparison of time to the event and nonlinear regression models in the analysis of germination data
Extended abstract Introduction: Numerous studies are being carried out to reveal the effects of different treatments on the germination of seeds from various plants. The most commonly used method of analysis is the nonlinear regression which estimates germination parameters. Although the nonlinear regression has been performed based on different models, some serious problems in its structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2021
ISSN: ['1936-0975', '1931-6690']
DOI: https://doi.org/10.1214/20-ba1213